

University of Basrah - College of Engineering Department of Mechanical Engineering

Subject: Numerical Analysis Lecture: Dr. Emad A. Khazal Stage: Third

Syllabus of Numerical Analysis

- 1. Roots of Equations
- 2. Solution of Linear Simultaneous Equations
- 3. Finite Difference, Interpolation and Extrapolation
- 4. Numerical Integration and Differentiation
- 5. Curve Fitting
- 6. Numerical Solution of Ordinary Differential Equations
- 7. Numerical Solution of Ordinary Partial Equations
- 8. Introduction to Finite Element Method.

1. Roots of Equations

Years ago, you learned to use the quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{1}$$

To solve

$$f(x) = ax^{2} + bx + c = 0$$
 (2)

The values calculated with eq.(2) are called the "**roots**" of eq.(1). They represent the vakues of x that make eq.(2) equal to zero.

<u>**Root of equation**</u>: The value of x that makes f(x)=0. The roots are sometimes are called *zeros* of equation.

There are many other functions for which the root cannot be determined so easily such as $f(x) = e^{-x} - x$. For these cases the numerical methods efficient means to obtain answer.

Before the advent of digital computers, there were several ways to solve for roots of *algebraic* and *transcendental* equations. Such as *Graphical technique method* is to plot the function and determine where it crosses the x-axis. This method is useful for obtaining rough estimated of roots, this is limited because of their lack precision.

The other method is <u>*Trial and error*</u>. This method consists of guessing a value of x and evaluating whether f(x) is zero. If not, another guess is made, and f(x) is again evaluated to determine whether the new value provides a better estimate of the root.

<u>Note:</u> transcendental function is one that is nonalgebraic. These include trigonometric, exponential, logarithmic, and other, less familiar, functions. Ex.

 $f(x) = \ln x^2 - 1$, or $f(x) = e^x + \sin(3x)$

1.1. Iteration Method (Fixed point method)

(open method)

We put x=g(x), assume initial value for x_0 then calculating next value as follows

 $x_{n+1} = g(x_n)$

and continue in this iteration. The absolute relative approximate error as

$$|\epsilon_{a}| = \left| \frac{x_{new} - x_{old}}{x_{new}} \right| \times 100 = \left| \frac{x_{i+1} - x_{i}}{x_{i+1}} \right| \times 100$$

Ex1. Solve the equation $f(x) = x^2 - 3x + 1 = 0$ using iteration method.

Since we know the solution $x = 1.5 \pm \sqrt{1.25}$ thus 2.618 and 0.3819

Sol. The equation $f(x) = x^2 - 3x + 1 = 0$ may be written

$$x = g_1(x) = \frac{1}{3}(x^2 + 1), \qquad \Rightarrow x_{n+1} = \frac{1}{3}(x_n^2 + 1)$$

If Choose $x_0 = 1$

Ν	X _n	$g_1(x_n)$	$ \epsilon_a $
0	1	0.667	50%
1	0.667	0.481	39%
2	0.481	0.411	17%
3	0.411	0.39	5.3%
4	0.39	0.38	2.6%
Convergence			

If Choose $x_0 = 3$

N	x _n	$g_1(x_n)$	$ \epsilon_a $
0	3	3.33	10%
1	3.33	4.037	17.5%
2	4.037	5.766	30%
3	5.766	11.415	50%
4	11.415	Divergence	

****** To Find other roots may be rewritten above equation (divided by x)

$$f(x) = x^{2} - 3x + 1 = 0 \implies x - 3 + \frac{1}{x} = 0$$
$$x = g_{2}(x) = 3 - \frac{1}{x}, \implies x_{n+1} = 3 - \frac{1}{x_{n}}$$

If Choose $x_0 = 1$

Ν	x _n	$g_1(x_n)$	$ \epsilon_a $
0	1	2	50%
1	2	2.5	20%
2	2.5	2.6	4%
3	2.6	2.615	0.57%
4	2.615	2.617	0.07%
Convergence			

If Choose $x_0 = 3$

N	Xn	$g_1(x_n)$	$ \epsilon_a $
0	3	2.667	12.5%
1	2.667	2.625	1.6%
2	2.625	2.619	0.22%
3	2.619	2.618	0.04%
4	2.618	2.618	0%
		Convergence	

* Convergence of fixed point method.

Then if |g'(x)| < 1 The iteration process converge for any x_0

For above example

$$g_1(x) = \frac{1}{3}(x^2 + 1) \implies g'(x) = \frac{2}{3}x$$

$$\therefore |g'(x)| < 1 \implies \left|\frac{2}{3}x\right| < 1 \implies x < \frac{3}{2} \text{ to converges}$$

1.2. Newton - Raphson Method

The Newton method is another iteration method for solving equation f(x) = 0, where f(x) is assumed to have a continuous derivative f(x). The method commonly used because of its simplicity and great speed.

Ex1. Solve the equation $f(x) = x^2 - 3x + 1 = 0$ using Newton Raphson method.

$$f(x) = x^{2} - 3x + 1 \implies f'(x) = 2x - 3$$

$$\therefore x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})} = x_{n} - \frac{x_{n}^{2} - 3x_{n} + 1}{2x_{n} - 3} = \frac{2x_{n}^{2} - 3x_{n} - x_{n}^{2} + 3x_{n} - 1}{2x_{n} - 3}$$

$$\therefore x_{n+1} = \frac{x_{n}^{2} - 1}{2x_{n} - 3}$$

If Choose $x_0 = 1$

If Choose $x_0 = 3$

N	X _n	X _{n+1}	$ \epsilon_a $
0	1	0	-
1	0	0.333	100%
2	0.333	0.381	12%
3	0.381	0.381	0%
Convergence			

N	x _n	x _{n+1}	$ \epsilon_a $
0	3	2.667	12.5%
1	2.667	2.619	1.8%
2	2.619	2.618	0.04%
3	2.618	2.618	0%
		Convergence	

<u>H.W.</u> Write a computer program to solve the following equation using the above two methods with percent error less than 1%.

 $\cos x - 10x + N = 0$

where N is your number